
Paper ID #29936

Improving Automated Group Assignments in an Academic Setting

Prof. Petra Bonfert-Taylor, Dartmouth College

Petra Bonfert-Taylor is a Professor and an Instructional Designer at the Thayer School of Engineering at
Dartmouth College. She received her Ph.D. in Mathematics from Technical University of Berlin (Ger-
many) in 1996 and subsequently spent three years as a postdoctoral fellow at the University of Michigan
before accepting a tenure-track position in the Mathematics Department at Wesleyan University. She left
Wesleyan as a tenured full professor in 2015 for her current position at Dartmouth College. Petra has
published extensively and lectured widely to national and international audiences. Her work has been
recognized by the National Science Foundation with numerous research grants. She is equally passion-
ate about her teaching and has recently designed and created a seven-MOOC Professional Certificate on
C-programming for edX for which her team won the ”2019 edX Prize for Exceptional Contributions in
Online Teaching and Learning”. Previously she designed a MOOC ”Analysis of a Complex Kind” on
Coursera. The recipient of the New Hampshire High Tech Council 2018 Tech Teacher of the Year Award,
the Binswanger Prize for Excellence in Teaching at Wesleyan University and the Excellence in Teaching
Award at the Thayer School of Engineering, Petra has a strong interest in broadening access to high-
quality higher education and pedagogical innovations that aid in providing equal opportunities to students
from all backgrounds.

Mr. Christopher Miller, Dartmouth College

c©American Society for Engineering Education, 2020



Improving Automated Group Assignments in an
Academic Setting
Chris Miller∗ and Petra Bonfert-Taylor

Dartmouth College

ABSTRACT

This research paper outlines and evaluates a method to efficiently assign students to groups in an
academic setting. Group work is an important part of academic learning. Prior research shows that
data-oriented group assignment methods outperform self selected and random methods. We introduce
the Group Assignment Tool, an automated method to perform data-oriented group assignment in an
academic setting. The Group Assignment Tool maximizes the benefits of instructor-assigned groups by
performing probabilistic weighted optimization of groups based on student survey data. We show that
the Group Assignment Tool produces comparable outcomes to prior hill climbing algorithms for group
formation with significantly faster runtime, and produces groups which score within a small factor of
optimal scores. We present the GAT via a traditional presentation as well as a demonstration.

Keywords: Group Assignment, Group Formation, Team Assignment, Team Formation, Hill-Climbing,
Collaborative Learning

1 OVERVIEW
College courses across a wide variety of departments rely on group work. Group work can promote
collaborative learning, improve information retention, and provide students with valuable team skills which
are vital for the modern workplace [Hansen (2006)]. However, groups can also suffer from issues such
as lack of shared scheduling availability, lack of diverse skill sets, or marginalization of at-risk students
[Bacon et al. (1999) and Dasgupta et al. (2015)]. This means that forming effective groups—which we
define as groups characterized by sufficient diversity of experience and knowledge, shared scheduling
availability, lack of isolation of at-risk students, and fulfilled student preferences—is an important task.
The three primary methods of group assignment are self-selected (students choose their own groups),
random assignment (students are sorted into random groups), and instructor selected (course instructors
assign students to groups).

Literature suggests that random and self-selected groups are often ineffective. [Feichtner and Davis
(1984)] reveals that students who formed their own groups were highly likely to rate the experience poorly,
and [Bacon et al. (1999)] notes performance issues with random and self-selected groups. Intuitively,
this makes sense. Groups formed by students are often chosen based on prior relationships rather than
diversity of experience and scheduling availability, and randomly selected groups are equally unlikely to
produce combinations with diverse levels of experience and similar schedules. Self-selected groups may
also lead to isolation and lack of participation from students who do not have close friends in the class.

Instructor selected groups are clearly a better method for producing positive group outcomes. However,

∗Funding for initial development of the Group Assignment Tool from September 2017 through March 2018 was provided
by the Kaminsky Undergraduate Research Award.



manual group formation can be difficult and time consuming. Group formation is a high dimensionality
constrained optimization problem. Instructors typically aim to maximize heterogeneity of groups with
respect to certain attributes while minimizing heterogeneity with respect to others and fulfilling various
constraints—for example, avoiding pairing certain students, or avoiding isolating students by gender or
ethnicity (research shows that isolating at-risk students in groups can damage outcomes for them [Sullivan
et al. (2018) and Dasgupta et al. (2015)].)

The Group Assignment Tool (GAT) addresses the difficulty of effective group formation by introducing
an automated method to produce groups based on student survey data. Instructors can select the relative
importance of each survey question and also indicate whether to optimize for heterogeneity or homogeneity,
avoid isolating students by any attribute, or fulfill student preferences for a given question.

We also introduce a scoring model for restrictive questions, which allow instructors to incorporate
student preferences into group formation. This question type is used for applications such as allowing
students to identify others with whom they do not wish to be paired.

The Group Assignment Tool has been used in its pilot phase to assign groups in multiple undergraduate
Engineering, Sociology, Anthropology, and Chemistry courses, with positive feedback from students and
instructors. In a modified application, we scheduled lab block assignments for an engineering school
machine shop. We are currently developing an integration into a college online learning management
system to make it easier for instructors to use the Group Assignment Tool in an effort to save time and
improve student outcomes.

2 PRIOR WORK
Previous literature describes many approaches towards group formation. These include clustering, genetic
algorithms, and hill climbing optimization. The latter is the approach we take.

2.1 Clustering
Clustering algorithms can be used to group data using some measure of similarity. They work by grouping
points which are close together into the same clusters. In common approaches such as k-means or fuzzy
c-means clustering, this is done by repeatedly assigning points to clusters based on cluster centroids
and updating cluster centroids to reflect the newly assigned points until convergence. This approach is
computationally efficient, but poses some challenges. Clustering algorithms are inherently designed to
group similar points together, which limits these algorithms to producing homogeneous groups. And while
clustering algorithms such as k-means and fuzzy c-means allow us to define the desired number of clusters,
they typically are not able to set a specified number of points per cluster, which is a problem for assigning
fixed-size student groups. Approaches such as Christodoulopoulos and Papanikolaou (2007) are forced to
alter cluster compositions after formation to resolve that problem, producing less optimal groups.

2.2 Genetic Algorithms
Genetic algorithms follow an evolutionary approach. By merging sets of previous group assignments and
introducing random mutations, they can solve certain optimization problems extremely effectively.

Systems such as Wang et al. (2007) are limited to selecting for heterogeneity or homogeneity only, and
do not allow instructors to form groups that are optimized with regard to both or to introduce other criteria.
Many also have limitations on the number of variables or group sizes.

The nature of the group assignment problem also limits the applicability of genetic algorithms. One
cause is group size constraints. Moving an individual from one group to another requires swapping another
individual back into the first group to avoid either group being over or under-filled. Another cause is that

2/12



genetic algorithms typically generate multiple potential solutions in each generation and combine the
best solutions in a crossover step. However this crossover step is problematic in the case of the group
assignment problem since each student must exist in exactly one group in the class. The crossover step
could lead to removed or duplicate students. In practice, this means that implementations of genetic
algorithms select random groups and swap students between them, producing an implementation of a hill
climbing algorithm.

2.3 Hill Climbing Algorithms
Hill climbing algorithms take an initial state, and evaluate local neighbor states to move to a state with a
higher score. In a group assignment context, this entails taking an initial set of groups and moving students
between groups as long as doing so improves scores. A significant limitation of hill climbing algorithms is
that they can be caught in a local maximum along the objective function. Our approach addresses this
problem by allowing random state changes which do not improve the score locally, but may allow the
algorithm to escape a local maximum.

The hill climbing algorithm outlined by Cavanaugh et al. (2004) and implemented by Layton et al.
(2010) as CATME Team-Maker is the closest to our work. Team-Maker permits arbitrary survey questions
and pursues a similar swapping strategy to ours. As we show in Section 4, our approach is more effective
at scale for large class sizes.

3 TECHNICAL DESCRIPTION
To produce groups, we first record student responses to survey questions determined by the instructor. We
next assign students to initial groups, then follow the swapping strategy outlined below to switch students
between groups with the goal of improving (maximizing) average group scores, defined in Section 3.3.
We produce initial group assignments randomly.

3.1 Swapping
Group Selection
At each iteration, the algorithm selects two groups to swap students between. In the majority of cases
these two groups are the lowest scoring current group and a random group excluding the highest scoring
current group. But with probability εg = .25, these two groups are chosen entirely randomly instead. This
effectively focuses the algorithm’s effort on improving the current worst group (and not compromising the
current best group), while still allowing swaps to improve other groups.

Student Swapping
Once groups have been selected, we use an epsilon-greedy search strategy inspired by the random walk
approach, WalkSAT, for constraint satisfaction problems [Selman et al. (1996)].

At each iteration, once two groups have been selected as outlined above, we select between a greedy
search and a random swap. We select a random swap with some small probability εs and greedy search
with probability 1− εs, where εs decreases by a constant discount factor γ at each iteration. Random
swaps allow the algorithm to escape local maxima. The discount factor γ produces stability, ensuring that
random swaps occur with reduced frequency as group scores converge. This means that the algorithm’s
actions approach that of a greedy algorithm as epsilon approaches zero, so that a random swap towards the
end of the program will not compromise scores.

Swapping continues until either the class score (the average group score across all groups) converges,
which we define as improving by less than .5% over 1000 iterations, or the program reaches a predefined
iteration count limit.

3/12



As an example of how epsilon-greedy swapping can outperform purely greedy swapping, consider
two groups of four students. Assume the optimal pairing is only achieved if two students from the first
group are swapped with two students from the second group. If the initial state is a local maximum and
any single swap of one student reduces the score, a purely greedy algorithm will never reach the optimal
pairing. Our epsilon-greedy algorithm, by contrast, can randomly make a swap which temporarily reduces
the class score, and then take a greedy step to reach the optimal assignment.

Greedy Search
In greedy search, we test swapping each possible pair of students between the two selected groups, scoring
the groups after each swap. If no swaps improve the average of both groups’ scores, the original groups
are kept. Otherwise, we select the swap which produces the maximum average score between the two
groups:

argmax
(i, j)

score(swap(i, j))

where i is a member of the first group and j is a member of the second and the function score() returns the
average score of the two groups.

Random Swap
In random swap, we select a random student from each group and swap them, even if this swap decreases
the average group score.

Selection of ε and γ

We determined the most effective values for εs and εg experimentally, and set them to .05 and .25
respectively. We set γ as

γ =

(
.001

εs

) 1
Niter

,

where Niter refers to the iteration limit. This ensures that ε decays to a value of .001 (a 0.1% chance of a
random swap) by the time it reaches the final iteration.

3.2 Search Strategy
GAT Random allows the user to provide a limit on runtime. The algorithm runs up to the time limit,
repeating with different random initializations and returning the highest scoring set of groups before time
expires.

Anytime Style
To avoid being limited by a poor random initialization, we use an approach inspired by anytime algorithms.
Anytime algorithms produce increasingly good solutions as they continue to run, and return the best
solution upon reaching a time limit or being interrupted [Zilberstein (1996)].

We generate random initializations and swap until we reach a given time limit. The tool keeps a
running average of how long each initialization and swap step takes and stops re-running once elapsed
time plus average runtime exceeds the time limit. At this point, the program outputs the highest scoring
set of groups found.

This functionality allows users to choose their preferred compromise between scores and runtime. A
longer runtime allows the algorithm to explore a greater portion of the state space by starting from more
random initializations, while a shorter runtime may be desirable for a user who needs groups immediately.

4/12



In practice, 10 to 15 seconds produces excellent scores even for large classes of several hundred students,
while remaining efficient.

Minimum runtime is constrained by the runtime of one initialization/swap pairing (which is itself
constrained by the chosen number of iterations). If runtime is set to less than the runtime for one
initialization/swap pairing (typically around 2 to 4 seconds for normal iteration counts), the program will
not terminate until after the runtime of one pairing has completed.

3.3 Group Scoring
When evaluating whether or not to swap students between groups, we need to evaluate whether or not
the swap improves group fitness by determining scores for the new groups. We follow the group scoring
method outlined by Cavanaugh et al. (2004) for multiple choice, checkbox, and scheduling questions and
describe it below. We extend their notion of pairing underrepresented students with isolation questions,
and introduce a new question type, restrictive questions.

The purpose of the algorithm is to produce a set of groups which maximizes the average group score
Gavg, given by

Gavg =
1
m

m

∑
j=1

G j,

where m is the number of groups in the class and the score of group G j, is given by

G j =
q

∑
i=1

WiXi, j.

Here, q is the number of scored questions in the survey, Wi is the weight of question i, and Xi, j is the fitness
measure for group j with respect to question i in the range [0,1].

The value of the fitness measure, Xi, j, is dependent on question type and is defined below. For all
questions, Xi, j ranges from 0 to 1. Note that a high fitness measure may not be desirable for a given
question type; for homogeneous questions and isolation or restriction questions (see below), a value of
zero is often desirable. In this case, the question is assigned a negative weight so that the algorithm selects
for lower fitness scores.

Multiple Choice Questions
We define multiple choice questions as questions which allow students to select exactly one option from
those presented.

For multiple choice questions, the fitness measure Xi, j (recall that this is the fitness measure for
group j with respect to question i) is a measure of heterogeneity where a value of 1 indicates a perfectly
heterogeneous group and a value of 0 indicates a perfectly homogeneous group. A group is heterogeneous
with respect to a given question if students in the group select mostly different answers to the question. A
group is homogeneous with respect to a given question if students in the group select mostly the same
answers to the question. For these questions, the fitness measure is given by:

Xi, j =
1
n

c

∑
k=1

n∨
s=1

rs,k,

where n is the number of students in the group, c is the number of choices for the question, and rs,k is 1
when student s has selected option k and 0 otherwise. The expression

∨n
s=1 rs,k is the logical or operator

over values of rs,k as s ranges from 1 to n and is equal to 1 if any value of rs,k is 1 and 0 if all values of rs,k
are zero.

5/12



Effectively, Xi, j measures the number of unique answers in group j to multiple choice question i,
normalized by the number of students in the group. When all students in group j select the same option,
the fitness measure is low: 1

n . When all students select different options, the fitness measure reaches 1.

Checkbox Questions
We define checkbox questions as questions which allow students to select zero or more options.

For these questions, the fitness measure Xi, j is again a measure of heterogeneity where a value of 1
indicates a perfectly heterogeneous group and a value of 0 indicates a perfectly homogeneous group.

Xi, j = max

{
0,1− 1

nc

c

∑
k=1

b2
k

}
,

where n is the number of students in the group, c is the number of choices for the question, and bk is given
by:

bk =

{
0, if ∑

n
s=1 rs,k < 2

∑
n
s=1 rs,k, else

}
i.e., bk is the number of students who selected option k if two or more students selected it, otherwise it

is zero.
This measure falls to zero (indicating high homogeneity) as the number of students who select each

option grows, with the square of the number of students selecting each option allowing us to indicate
that four students selecting the same option is much more homogeneous than two students selecting the
same option. If all students select different options, the function returns 1− 1

nc , a value close to 1 which is
indicative of high heterogeneity.

Scheduling Questions
We define scheduling questions as questions where students select blocks of time in which they are
unavailable.

For scheduling questions, the fitness measure represents the group’s level of homogeneity in free
schedule blocks. A value of 1 indicates a high level of schedule compatibility and a value of 0 indicates a
low level of schedule compatibility. We use

Xi, j =
1
c

(
c−

c

∑
k=1

n∨
s=1

rs,k

)
,

where c is the total number of options (scheduling blocks), n is the number of students in the group,
and rs,k is 1 when student s has selected option k and 0 otherwise. Recall that a student selecting option k
indicates that this student is not available during scheduling block k. Intuitively, this measures the total
fraction of all scheduling blocks for which no student in the group is busy.

Restrictive Questions
Restrictive questions are questions which allow students to indicate their preferences for certain attributes
of their team members. As an example, instructors may wish to allow students to select other students
with whom they wish to work or would prefer not to work. By providing a positive weight to the question,
the instructor can allow students to indicate that they do not wish to work with students who provided a
specified response to another question. By providing a negative weight, on the other hand, users can allow

6/12



students to indicate that they do wish to work with students who provided a specified response to another
question.

This question type can link to any other question or questions. As an example of linking to multiple
questions, consider a set of three questions asking students for their top three preferred group project
topics. By linking students’ top choices to questions recording students’ first, second, and third choices,
instructors can reward groups in which each student’s first choice topic is among all of their team-members’
top three choices.

For restrictive questions, a value of 1 indicates that the group violates the restriction, while a value of
0 indicates that the group is in compliance with the restriction.

Xi, j =
n∨

s=1

Zs,i,

where

Zs,i =

{
1, there exists b ∈ S s.t. as,i = ab,ia

0, else

S is the set of all students, as,i indicates the response of student s to question i, and ia is the associated
question for restrictive question i.

Isolation Questions
Isolation questions allow users to prevent groups in which students with a specified majority response
outnumber other students. For example, studies in STEM courses have shown that female students report
higher self-confidence and are more likely to major in a course’s subject if placed in groups with a higher
percentage of women, and student outcomes for all students in a group improve as the percentage of
women in the group increases [Dasgupta et al. (2015) and Sullivan et al. (2018)]. Isolation questions allow
users to penalize isolation of students by gender, ethnicity, or other attribute.

For isolation questions, a value of 1 indicates that a student is alone with respect to their question
response in a group, a value of 0.5 indicates that students from minority answer choices make up less than
half of the group, and a value of 0 indicates that no isolation is present. These questions thus require a
negative weight to indicate that groups exhibiting isolation will be penalized.

Xi, j =


1, Yi, j = 1
1
2 , 1 < Yi, j <

1
2n

0, Yi, j ≥ 1
2n or Yi, j = 0

,

where Yi, j is the number of students in group j who selected a non-majority answer choice for question
i, defined as

Yi, j =
n

∑
s=1, k∈Ai

rs,k,

where k refers to any non-majority answer choice in the set Ai of non-majority choices for question i.

4 EVALUATION
We compare the results from the Group Assignment Tool (GAT) to an implementation of the Team-Maker
algorithm described in [Cavanaugh et al. (2004)] and [Layton et al. (2010)].

7/12



Figure 1. Score comparison between the Group Assignment Tool and Team-Maker

4.1 Scores
Figure 1 depicts mean group scores averaged over ten runs of each program. Each run was performed
under a different random seed. Error bars depict the 99% confidence intervals for the data, meaning that
we can say with 99% confidence that the true mean lies within the error bars.

GAT Random refers to the Group Assignment Tool run with random initializations. Team-Maker
refers to the Team-Maker algorithm introduced in [Cavanaugh et al. (2004)].

4.2 Speed
Figure 2 depicts the average runtime, in seconds, for each algorithm across all class sizes tested. Error
bars depict the 99% confidence intervals for the data.

Figure 2. Runtime comparison between the Group Assignment Tool and Team-Maker

Both approaches have very similar runtimes for small class sizes (N ≤ 40). However, as class sizes
grow, the GAT approach outperforms the Team-Maker approach from a speed perspective. This is likely
because the Team-Maker approach exhaustively analyzes every pair of groups when swapping, and the
number of possible group pairs grows exponentially with the number of groups (a linear function of class
size).

These results indicate that the Group Assignment Tool approach is suitable for large classes. GAT
Random produces equivalent to slightly stronger scores than Team-Maker and provides stable runtime.

8/12



Our algorithm also allows runtime to be explicitly set by the user according to their needs. Stable runtime
means that it can be used for extremely large-scale applications without runtime issues.

4.3 Consistency at Scale
The Group Assignment Tool is consistent at scale. While Team-Maker achieves consistency in scores by
continuing to exhaustively analyze every possible student swap between each pairing of groups, the Group
Assignment Tool’s use of probabilistic swapping allows it to avoid the explosive runtimes Team-Maker
entails for large class sizes. This shows that the Group Assignment Tool is highly scalable for use in large
courses.

4.4 Proximity to an Optimal Solution
To provide context for the performance of the Group Assignment Tool, we introduce two methods to
compare performance of the GAT and Team-Maker to an optimal solution (defined as a set of groups for a
given class which produces the highest possible average group score).

For a given class size, n, and a given group size, p, there are C ways to partition the class into groups
of p students. Assuming p divides n,

C =
n!(

n
p

)
!(p!)

n
p

Thus exhaustively analyzing every grouping of students into groups of 4 is impractical for large class
sizes. For 16 students, C = 2,627,625, for 20 students, C = 2,546,168,625 and beyond 20, the number C
continues to grow at an extremely rapid rate.

As proof of the tool’s effectiveness in a fully optimal scenario, we took a 12 person subset of our
dataset and exhaustively analyzed all partitions of a twelve person class into groups of four. We then found
the group assignment with the maximum average group score. GAT Random produced groups scoring
within 2.64% of optimal. This indicates that for small class sizes, the behavior of the Group Assignment
Tool is very close to optimal.

Since determining the optimal groups for our dataset is not a tractable problem for large class sizes, to
compare performance of the Group Assignment Tool with optimal performance we instead generated new
data with known optimal groups. This data generation allows us to measure how close groups formed
by the Group Assignment Tool are to optimal groups, and allow evaluation on larger datasets than was
possible with collected data. Details of how we generated optimal groups are provided in Section 4.5.
Class sizes differ slightly from those used for collected data; we only consider classes and group sizes
where group size evenly divides class size, and data generation allows us to evaluate all tools on two
chosen larger class sizes of 200 and 400 students.

Figure 3 shows mean group score (averaged across ten runs with different random seeds) on generated
datasets for each approach vs number of students being grouped. We also include optimal scores to
contextualize our results. Error bars depict the 99% confidence intervals for the data.

As Figure 3 depicts, all approaches achieve optimal scores for the smallest class size of 20 students.
Figure 4 shows mean runtime, in seconds, (averaged across ten runs with different random seeds)

for each approach (GAT Random, and Team-Maker) vs number of students being grouped. We depict
runtimes on a log scale, because the long runtimes of Team-Maker for class sizes 200 and 400 require a
y-axis scale which makes runtimes difficult to interpret for small class sizes. Error bars again depict the
99% confidence intervals for the data.

The introduction of larger class sizes shows the rapid growth of runtimes for Team-Maker, which makes
the Team-Maker tool impractical to use in large class settings. GAT Random shows similar performance

9/12



Figure 3. Comparison of Group Assignment Tool and Team-Maker scores with optimal scores

Figure 4. Comparison of runtimes on generated data, log scale

to Team-Maker and requires only ten seconds of runtime, showing its value for applications where users
require extremely rapid group generation or group generation for large courses.

4.5 Parameters and Data
GAT Random Initialization Parameters

We set ε = .25, and used a discount factor of γ =
(
.01
ε

) 1
n , where n was the number of iterations, set to

15000. For iteration, we gave the algorithm a time limit of 15 seconds. Finally, we set the convergence
threshold to .005.

Team-Maker Parameters
We set Team-Maker’s outer loop counter (the number of random initializations the algorithm starts from)
to 50, and set the inner loop counter (the number of times it will iterate over all combinations of groups
and attempt to perform swaps) to 20. These parameters were used by both [Cavanaugh et al. (2004)] and
[Layton et al. (2010)], and we use them here to remain consistent with their work.

10/12



Data
We gathered real student data from a pilot run of the Group Assignment Tool in an undergraduate on-
campus course. This included 117 survey responses for questions on topics including gender, ethnicity,
class year, major, difficulty of a prerequisite course, schedule availability, teamwork style, leadership style,
and hobbies. We obtained multiple class sizes for analysis by selecting subsets of this dataset.

Generated Data
To generate optimal groups, we first initialize each group with an empty student object, then generate
responses on a group level according to question type.

For homogeneous multiple choice questions, we randomly select a response from the list of possible
responses and assign the entire group that response, producing a multiple choice fitness measure of 1

n .
This is the lowest possible value, since all students must select at least one option.

For heterogeneous multiple choice questions, we randomly select a unique response for each student.
If the number of possible responses is less than the number of students in the group, repeat selection is
allowed for the additional students. This produces a fitness measure of c

n , the maximum possible measure.
For homogeneous checkbox questions, we randomly assign between one and three possible responses

to the group such that each student has the same responses. This produces a checkbox fitness measure of
0. This measure cannot be lower because the checkbox scoring measure has a minimum value of 0.

For heterogeneous checkbox questions, we randomly assign each student a unique choice. We allow
repeat selection if the group size is greater than the number of options, but this did not occur for our
evaluation question set. For our evaluation set, this produces a fitness measure of 0, the maximum possible
checkbox fitness measure.

For scheduling questions, we select three random schedule blocks for each group and assign all
students in the group those blocks. This produces a maximal scheduling fitness measure of 3

4 for the
scheduling blocks we used. Since all students select three blocks, this value cannot be higher than 3

4 .
For isolation questions, we randomly select between a minority population of 0 and a minority

population of ceil(1
2n). Either option produces the minimum isolation penalty of 0.

As shown above, the generated groups have optimal fitness measures for each question (maximum for
positively weighted questions, minimum for negatively weighted questions). Thus the generated groups
and scores are the best possible groups and scores for the set of students they apply to, and we can judge
the Group Assignment Tool by proximity of its group scores to these optimal group scores.

Questions and Weighting
Group scores calculated by the Group Assignment Tool are dependent on questions, question types, and
question weights. For evaluation, we held all three of these factors constant so that scores are directly
comparable between different runs of the two Group Assignment Tool approaches and Team-Maker.

5 LIMITATIONS
The Group Assignment Tool may be less effective in settings involving mostly strict constraints (such as
isolation or restriction constraints), especially ones which are difficult to fulfill or contradictory to each
other. The Group Assignment Tool can produce groups which respect simple isolation criteria such as
avoiding gender isolation. However, if multiple isolation criteria are combined with multiple restriction
criteria (for instance, if students in the class select an unusually high number of other students they do not
wish to work with) the tool may fail to produce groups which respect all of the constraints.

This is because the Group Assignment Tool handles all constraints via score penalties, and our
probabilistic approach to maximizing class scores produces an inherent risk of failing to find a unique

11/12



solution in a large state space. This approach does, however, allow users to weigh which constraints are
more important, and can minimize constraint violations even when a perfect solution does not exist.

6 CONCLUSION & FUTURE WORK
Future research is important to determine specific attributes which are relevant to successful group
outcomes. Research into significant attributes can help ensure that high scoring groups produced by the
Group Assignment Tool correspond to effective groups. Since the Group Assignment Tool maximizes
scores according to weights and questions set by the user, if ineffective questions are provided or weights
are not appropriate, the tool may produce ineffective groups.

However, our work shows that the Group Assignment Tool is more scalable for large classes than
similar previous approaches to the group formation problem while remaining highly effective. It allows
efficient optimization across mixed metrics and question types, and can be used to ensure that groups
contain students with diverse sets of experience and knowledge and shared availability for meeting outside
of class, and that group assignments fulfill student preferences while not isolating at-risk students.

REFERENCES
Bacon, D. R., Stewart, K. A., and Silver, W. S. (1999). Lessons from the best and worst student team

experiences: How a teacher can make the difference. Journal of Management Education, 23(5):467–488.
Cavanaugh, R., Ellis, M., Layton, R., and Ardis, M. (2004). Automating the process of assigning students

to cooperative-learning teams. In in proc. 2004 ASEE Annual Conf.
Christodoulopoulos, C. E. and Papanikolaou, K. A. (2007). A group formation tool in an e-learning context.

In 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007), volume 2,
pages 117–123. IEEE.

Dasgupta, N., Scircle, M. M., and Hunsinger, M. (2015). Female peers in small work groups enhance
women’s motivation, verbal participation, and career aspirations in engineering. Proceedings of the
National Academy of Sciences, 112(16):4988–4993.

Feichtner, S. B. and Davis, E. A. (1984). Why some groups fail: A survey of students’ experiences with
learning groups. Organizational Behavior Teaching Review, 9(4):58–73.

Hansen, R. S. (2006). Benefits and problems with student teams: Suggestions for improving team projects.
Journal of Education for Business, 82(1):11–19. Copyright - Copyright Heldref Publications Sep/Oct
2006; Document feature - ; Tables; Last updated - 2017-10-31.

Layton, R. A., Loughry, M. L., Ohland, M. W., and Ricco, G. D. (2010). Design and validation of a
web-based system for assigning members to teams using instructor-specified criteria. Advances in
Engineering Education, 2(1):n1.

Selman, B., Kautz, H. A., and Cohen, B. (1996). Local search strategies for satisfiability testing. In
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 521–532.

Sullivan, L. L., Ballen, C. J., and Cotner, S. (2018). Small group gender ratios impact biology class
performance and peer evaluations. PloS one, 13(4):e0195129.

Wang, D.-Y., Lin, S. S., and Sun, C.-T. (2007). Diana: A computer-supported heterogeneous grouping
system for teachers to conduct successful small learning groups. Computers in Human Behavior,
23(4):1997–2010.

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI magazine, 17(3):73–73.

12/12


