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Abstract

Deep neural networks are vulnerable to adversarial
examples—minor perturbations added to a model’s input
which cause the model to output an incorrect prediction. We
introduce a new method for improving the efficacy of adver-
sarial attacks in a black-box setting by undertraining the
surrogate model which the attacks are generated on. Using
two datasets and five model architectures, we show that this
method transfers well across architectures and outperforms
state-of-the-art methods by a wide margin. We interpret the
effectiveness of our approach as a function of reduced sur-
rogate model loss function curvature and increased univer-
sal gradient characteristics, and show that our approach re-
duces the presence of local loss maxima which hinder trans-
ferability. Our results suggest that finding strong single sur-
rogate models is a highly effective and simple method for
generating transferable adversarial attacks, and that this
method represents a valuable route for future study.

1. Introduction
Previous work has shown that deep learning models are

vulnerable to adversarial perturbations [25]. These are
small modifications to an input image which cause the
model to output an incorrect prediction.

Understanding adversarial examples is an important
task. When deep models are applied in security-conscious
domains such as autonomous driving, healthcare, and fraud
detection, their vulnerabilities to attack become vulnerabil-
ities which can threaten individual health and safety. This
threat becomes especially salient with the advent of adver-
sarial examples which can fool models in the physical world
[16, 7].

Currently the most consistently successful method for
defending models is adversarial training, which entails
training on adversarial examples in addition to (or instead
of) clean images [8]. However, adversarial training meth-
ods are typically computationally expensive, reduce model

accuracy on clean inputs, and only provide limited security,
suggesting that better methods are needed [8, 20].

2. Adversarial transfer
Adversarial attacks can be grouped into white and black-

box attacks. In white-box attacks, the attacker has access to
the parameters and architecture of the target model, allow-
ing them to utilize model gradients and losses. In black-box
attacks, the adversary has no access to the parameters of the
target model, and may or may not have access to its archi-
tecture or outputs (predictions and logits) for a given input.

Szegedy et al. showed that adversarial examples have
the ability to transfer between models, enabling an example
generated on a seen model (known as the surrogate model)
to fool an unseen model (known as the target model) [25].
This effect means that keeping a model’s parameters and
query access private is not an effective way to protect a
model from adversarial attack. As long as an adversary has
the ability to train a model on a compatible dataset, the ad-
versary can use their own model as a surrogate to produce
adversarial examples which may then fool the target classi-
fier.

Many methods for producing effective black-box trans-
fer rely on access to the outputs of the target model [1].
Access to target model outputs allows for a class of attacks
known as gradient estimation attacks, in which the adver-
sary attempts to estimate the gradients of the target model
in order to approximate a white-box attack in a black-box
setting (using, for example, a finite-difference method). Re-
quired access to the target model can range from the pre-
dicted label for an input to class-conditional probability
predictions for all classes. Recent approaches to gradient-
estimation attacks include [2], [3], [14], and [27]. Other
approaches such as that of Moon et al. use query access to
construct adversarial examples without gradient estimation
[21]. This approach is not always representative of real-
world model access. In real-world settings, models may be
secured by restricting access to outputs or limiting the per-
mitted number of queries. In these settings, an adversary
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may not have access to the predictions for any inputs. This
led Ilyas et al. to introduce more restrictive black-box set-
tings in [13].

We use the restrictive zero-knowledge, zero-access set-
ting, in which an adversary has no knowledge of model ar-
chitecture or parameters, and has no access to model out-
puts. An adversary which can effectively fool a target model
in this setting is extremely strong. One approach in this set-
ting focuses on building attacks on ensembles of surrogate
classifiers [19]. This approach reduces the overfit of attacks
to the surrogate model, and increases their ability to trans-
fer to the target model. A limitation of this approach is the
computational requirements for an adversary to train multi-
ple diverse classifiers and build adversarial examples using
them in parallel.

Recent attempts to produce more successful transfer at-
tacks have focused on creating stronger attack generation
methods. The current state of the art in query-free adver-
sarial transfer is the Intermediate Level Attack (ILA) intro-
duced by Huang et al. [12]. They show that enhancing a
previously generated adversarial example by increasing its
perturbation on a certain layer of the surrogate model sub-
stantially improves transfer to target models.

Our work, by contrast, focuses on finding a more ef-
fective individual surrogate model. We show that gener-
ating simple attacks on a more effective surrogate produces
stronger transferability than generating more sophisticated
attacks on a less effective surrogate. We suggest that fur-
ther research into finding highly effective surrogate models
may be a promising avenue for producing strong transfer
attacks and accurately assessing the true robustness of ex-
isting models to black-box attack. We provide extensive
analysis on the CIFAR-10 dataset, and validate our results
with analysis on ImageNet [5, 15].

3. Attack methods
A variety of attack strategies have been used in the past

to produce transferable adversarial attacks. We evaluate our
models against a variety of attacks, and show them below.
Our results are based on standard implementations of the
attacks released by Huang et al. and the Cleverhans team
[12, 23]. We use ε = .05 for all attacks. Note that because
our work focuses on finding stronger surrogate models for
adversarial transfer rather than finding stronger attack gen-
eration methods, we use previously developed attacks to
evaluate our proposed method for generating transferable
attacks.

The Fast Gradient Sign Method (FGSM) was intro-
duced by Goodfellow et al. as a simple method for pro-
ducing adversarial examples efficiently [8]. The adversarial
perturbation is generated by scaling the sign of the model’s
gradient by ε, and this perturbation is added to the original
image to form the adversarial example. The adversarial im-

age, x̂, is defined by 1, where ∇`(x) is the gradient of the
model loss with respect to input x.

x̂ = x+ ε · sign(∇`(x)) (1)

Iterative FGSM (I-FGSM), also referred to as the Basic
Iterative Method, is a simple extension to the FGSM attack,
introduced by [16]. This method applies FGSM repeatedly
to produce a more finely targeted adversarial example. The
attack is defined in Equation 2, where x̂n indicates the ad-
versarial example produced by n steps of I-FGSM and α in-
dicates the learning rate. Here the function Clip restricts the
adversarial example to remain within the ε-ball surrounding
x.

x̂n = Clipx,ε( ˆxn−1 + α · sign(∇`(xn−1))) (2)

We use a learning rate (the epsilon value during each iter-
ation) of .005 and 20 iterations. These values were deter-
mined empirically via grid search to produce the strongest
transfer.

Momentum I-FGSM (MI-FGSM) was introduced by
Dong et al. [6] to enhance iterative attack transferability.
The authors find that incorporating a momentum term in
when calculating I-FGSM increases the stability of the at-
tack by reducing its susceptibility to being trapped in a local
loss maximum. We use a learning rate of .005 and 20 itera-
tions of attack, with a decay µ = 0.9.

The Transferable Adversarial Perturbation (TAP) at-
tack, introduced by Zhou et al., uses intermediate feature
representations to generate an adversarial example [32].
The TAP attack attempts to maximize the distance between
the original image and the adversarial image in the interme-
diate feature maps of the surrogate model. The authors also
show that applying smooth regularization to the resulting
perturbation improves transfer between models.

The Intermediate Level Attack (ILA) was introduced
by Huang et al. in 2019 as the state of the art in query-free
transfer attacks [12]. This method takes a predefined adver-
sarial example, created using another method, and enhances
its perturbation on intermediate layer representations in the
surrogate model. The attack uses the predefined example
as a guide towards an adversarial direction. We refer to an
ILA attack which enhances an example produced by FGSM
as ILA-enhanced FGSM, and follow the same convention
for other ILA attacks. For ILA-enhanced iterative attacks,
we follow the methodology of the original paper and use ten
iterations of the original attack followed by ten iterations of
ILA enhancement. For each surrogate, we evaluated ILA at-
tacks based on each possible layer, and found that the opti-
mal source layer to enhance perturbations on was consistent
for all epochs of the surrogate model. We find that the opti-
mal layer to target is block 4 for ResNet18 and SENet18,
block 0 for MobileNetV2, block 9 for GoogLeNet, and
block 6 for DenseNet121, and we report results for ILA
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based on these layers. These parameters are consistent with
the optimal target layers shown by Huang et al. [12].

4. Intermediate epoch transferability
4.1. Approach

Prior work has often focused on attack generation strate-
gies which improve transferability. These include algorith-
mic approaches such as MI-FGSM, which introduced a mo-
mentum term to prevent the attack from being caught in lo-
cal loss maxima (creating perturbations which produce high
loss on the surrogate model, but not on a target model, due
to the imperfect decision boundary of the surrogate), and vr-
IGSM, which introduced local gradient smoothing for the
same reason [6, 30]. They also include novel approaches
such as input diversity, in which the attacker transforms the
adversarial image during the attack to find a more general-
izable perturbation [31].

We instead focus on finding a surrogate model with a
generalizable yet low complexity decision boundary. The
surrogate model must be generalizable to approximate the
decision boundary of the data manifold well (and thus ap-
proximate the decision boundary of the target model well).
It must also be low complexity, to limit the effect of local
loss maxima on the generated attack. If we avoid the sur-
rogate model overfitting to the training data, we can in turn
ensure that it learns a highly generalizable, low-complexity
function. Learning this type of function maximizes our
chance of an attack on the surrogate model generalizing
well to the target model, as shown by [4]. These obser-
vations give rise to a simple method for producing highly
transferable attacks: undertraining the surrogate model.

4.2. Undertrained Models

We define a fully trained model as one which has
achieved the lowest validation set loss given its architec-
ture, initialization, and training procedure. This definition
encompasses the typical training procedure for deep learn-
ing models: train a model until validation set loss stops im-
proving, then select the model with the lowest validation set
loss (the fully trained model) for final use.

We define an undertrained model using two conditions.
First, an undertrained model is the state of a model with a
higher validation set loss than the fully trained model. This
means that an undertrained model is by definition a less ef-
fective model for the initial task. Second, an undertrained
model has undergone fewer training steps (been trained for
less epochs) than the fully trained model. This condition is
applied because we wish to exclude overfit models, which
fulfill the first condition of an undertrained model but are
unlikely to fulfil the conditions of strong generalization and
low complexity defined in Section 4.1.

To evaluate this approach, we train surrogate models

CIFAR-10 Test 
Images

Surrogate Model 
Epochs

Attack 
Function Target Model

Adversarial Images

CIFAR-10 Test 
Images

Surrogate Model 
Epochs

Attack 
Function Target Model

Adversarial Images

Figure 1: Overview of our methodology for evaluating un-
dertrained adversarial transfer to a target model. Test set
images and individual epochs of each surrogate model are
inputs to a given attack function. The attack function gen-
erates adversarial images, which are then evaluated against
a target model.
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Figure 2: ResNet18 post-attack accuracy on I-FGSM.

fully as described in Section 5 and save a copy of the
model parameters after each epoch of training. This en-
ables retroactive evaluation of the optimal point for building
an adversarial attack. We show an overview of our transfer
evaluation methodology in Figure 1.

5. Experimental Setup

We chose to evaluate our approach across a wide vari-
ety of model architectures to produce an accurate assess-
ment of transfer between both similar and different mod-
els. We report results using ResNet18 models, SENet18
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models, GoogLeNet models, DenseNet121 models, and
MobileNetV2 models as described by [9, 10, 26, 11, 24].
Model architectures are as they is defined in their original
papers, with minor changes given by [18] to accommodate
the input size of CIFAR-10 images. All models are trained
and evaluated on an individual NVIDIA Tesla P100 GPU.

We use the CIFAR-10 dataset for training and testing
[15]. This dataset is composed of 60,000 images divided
into ten disjoint classes. There are 6,000 images per class,
and the dataset is divided into 50,000 training images and
10,000 test images. Each image is a full color 3 × 32 × 32
image.

For naturally trained models, we used the definitions and
training scripts provided by [18]. Our final trained accura-
cies are comparable to those reported by [18].

To ensure that our analysis is comparable to the current
state of the art, we use the pretrained target models released
by [12]. These models are a ResNet18 model, an SENet18
model, a DenseNet121 model, and a GoogLeNet model as
described by [9, 10, 11, 26]. As with our surrogate models,
these models are as defined by their original authors with
the exception of minor modifications to support the 32 ×
32 input size of images. These models are implemented
and trained using code released by [18], consistent with our
training.

For adversarially trained models, we use fast adversarial
training, introduced by [29], with ε = .05 to train ResNet18
models via adversarial training. Fast adversarial training in-
troduces FGSM adversarial examples with random initial-
izations into each minibatch while training, controlling for
a phenomenon the authors refer to as catastrophic overfit-
ting to produce robustness to iterative attack. Our results
for these models are comparable to those reported by [29],
and show that the adversarial training method makes these
models quite robust to adversarial examples.

We describe the training procedures and final accuracies
for the CIFAR10 models described above in SM in Sec-
tion S3.1 and evaluate the impact of hyperparameter selec-
tion in SM in Section S4.

6. Results

6.1. Naturally trained transfer

To evaluate the effectiveness of this approach, we tested
transfer between two separately trained ResNet18 models
across epochs. Both models were trained using the sur-
rogate model training procedure described in 5. We eval-
uated transfer by generating attacks on every third epoch
of the first model (ie, the epoch set {1, 4, 7, ..., 88}) and
transferred them to the all epochs in the same set of the
second model. Our results are shown in Figure 2, where
lower accuracy after attack indicates more effective trans-
fer. Although intuition would suggest that attacks gener-

ated on a given surrogate epoch would transfer best to the
same epoch of target model, our results show that this is not
the case. The resulting accuracy landscape instead shows a
distinct valley between surrogate epochs 20 and 40, where
the same surrogate models transfer well to almost all target
model epochs. Also significant is that these epochs outper-
form later epochs (those which are more fully trained) in
transferring to target models. These results validate the hy-
pothesis that undertraining can produce a surrogate model
which generates significantly more transferable adversarial
examples.

We expand our analysis by evaluating transfer from in-
termediate epochs of ResNet18, SENet18, MobileNetV2,
GoogLeNet, and DenseNet121 models to separately trained
target models from the same set of architectures. We con-
sider this wide variety of architectures to evaluate the effec-
tiveness of our approach in a true black-box setting, where
the target model architecture is unknown and thus no guar-
antees can be made about the similarity of the target and
surrogate model architectures. Note that the separate train-
ing means that attacks between the same architectures are
not white box attacks, as the models have different param-
eters. We generate attacks on every other epoch of the sur-
rogate model, and target the epoch of the target model with
the lowest test loss (ie, the fully trained final model). For all
models tested (CIFAR-10 and ImageNet), the fully trained
epoch was between epochs 80 and 89. We evaluate transfer
for a variety of attacks: FGSM, I-FGSM, MI-FGSM, ILA-
enhanced I-FGSM, ILA-enhanced MI-FGSM, and Trans-
ferable Adversarial Perturbations. For all attacks, we use
the parameters outlined in Section 3, and use the attack
method to form adversarial examples based on all images
in the validation set of the dataset.

We compare our approach of generating adversarial ex-
amples on intermediate epochs to the previous standard
approach of generating adversarial examples on the best
loss model. Our findings show that the intermediate-epoch
approach produces examples which transfer substantially
more successfully than previous approaches across a vari-
ety of attack styles. For all attacks evaluated, the interme-
diate epoch attack outperforms the best epoch attack. Our
results for the best intermediate epoch compared to the pre-
vious approach using a ResNet18 surrogate model are given
in Table 1, and we show results for all surrogate models
for MI-FGSM attacks in Figure 3. We provide equivalent
graphs for all other attacks in the supplementary material
(SM) in Figures S1-S5.

We show that an intermediate epoch MI-FGSM attack
produces the strongest results across most surrogate-target
combinations, with the exception of the ResNet18 surro-
gate, where it performs similarly to an intermediate-epoch
I-FGSM attack. We discuss potential reasons for I-FGSM
performing similarly to MI-FGSM on the ResNet18 surro-

4



(d) SENet18 surrogate model (e) DenseNet121 surrogate model(c) MobileNetV2 surrogate model

(b) ResNet18 surrogate model(a) GoogLeNet surrogate model

Figure 3: Solid lines indicates post-attack accuracy for MI-FGSM transfer attacks from naturally trained models to target
models (ε = .05). Lower accuracy indicates better transfer. Dashed colored lines indicate gradient similarity between
surrogate and target at each epoch. The black vertical lines indicate the surrogate epoch with the best transferability for most
attacks.

Table 1: Top-1 accuracy (%) (show as Undertrained/Fully Trained) after attack by target model for CIFAR-10 attacks gen-
erated using an intermediate surrogate epoch of a ResNet18 model and the surrogate epoch with the lowest validation loss.
ε = .05. Lower accuracy indicates better transfer.

Target MI-FGSM I-FGSM ILA MI-FGSM ILA I-FGSM TAP

ResNet18 2.23/15.63 2.20/22.40 2.41/10.39 2.36/9.98 13.44/22.83
SENet18 2.23/16.00 2.79/24.43 2.69/10.87 2.88/11.57 12.92/22.36
MobileNetV2 2.74/18.76 2.79/22.36 2.82/11.99 2.62/10.24 12.76/22.93
GoogLeNet 5.62/26.64 5.61/35.42 6.35/17.09 6.04/16.76 17.18/27.96
DenseNet121 2.24/15.87 2.13/21.60 2.57/10.29 2.44/9.42 13.67/21.74

gate in 7. We selected the strongest surrogate (ResNet18)
by choosing the surrogate which produced attacks which
performed the best on average across all target models. We
choose to focus on the MI-FGSM attack, since it performs
the best across the full range of surrogate models. MI-
FGSM attacks based on the ResNet18 surrogate reduced ac-
curacy on ResNet18 by 97.65%, on GoogLeNet by 94.07%,
on MobileNetV2 by 97.02%, on SENet18 by 97.64%, and
on DenseNet121 by 97.66%. These results emphasize the
ability of undertrained surrogate attacks to generalize across
a wide variety of target model architectures in a black-box
setting. To the best of our knowledge, this makes an under-
trained MI-FGSM attack (UMI-FGSM) the state of the art
in query-free transfer attacks. Our results also show that the
optimal surrogate epoch for transfer is consistent across tar-
get models for all attacks except TAP. This indicates that an
adversary can select the strongest surrogate by evaluating

performance on other models, without requiring any query
access to the target model, fitting our case of the black-box
setting with zero query access.

To validate that our fully trained models are represen-
tative of models typically used to generate adversarial at-
tacks, we generate attacks using the CIFAR-10 models re-
leased by Huang et al. [12] (which we use as target models
in this work) and transfer them to other target models. We
also include our MobileNetV2 target model for complete-
ness, although this was not a model released by Huang et
al. We report results in SM in Table S3. Our results show
that attacks generated using these models as surrogates are
significantly less effective than attacks generated using our
undertrained surrogate models at transferring to the same
targets, validating our analysis.

These results show that undertraining a surrogate model
is an effective strategy for producing adversarial examples
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Table 2: Top-1 accuracy (%) (show as Undertrained/Fully Trained) after attack by target model for ImageNet MI-FGSM
attacks generated using an intermediate surrogate epoch and the surrogate epoch with the lowest validation loss. ε = .05.
Lower accuracy indicates better transfer.

Source Target

ResNet18 SENet18 MobileNetV2 GoogLeNet DenseNet121

ResNet18 2.06/4.43 2.33/5.49 11.62/15.59 18.33/24.14 12.55/15.10
SENet18 4.52/8.47 2.53/5.63 14.55/18.03 21.94/28.21 15.78/19.05
MobileNetV2 21.07/20.93 20.63/21.03 5.29/4.55 33.63/34.33 31.50/29.59
GoogLeNet 12.28/19.64 14.14/21.62 15.41/21.79 10.09/18.10 19.54/25.15
DenseNet121 5.31/17.08 6.03/18.07 11.25/21.34 18.21/30.73 2.56/8.48

which can transfer well across varied model architectures.
To evaluate whether or not our results are limited to small

datasets such as CIFAR-10, we evaluate our approach on
the ImageNet dataset [5]. We find that the effectiveness of
an undertrained attack is also present for ImageNet-trained
models, showing that this approach is applicable to datasets
with large image counts, class counts, and image sizes. We
show results for the transferability of MI-FGSM attacks be-
tween ImageNet models in Table 2, and note that we gen-
erally achieve reductions of twenty to seventy percent in
post-attack accuracy. We do not see this effect strongly for
the MobileNetV2 surrogate model, where the undertrained
model performs equivalently to the fully trained model. We
suggest this is due to the results shown in Figure 5, which
show that the MobileNetV2 architecture does not display
a local minimum for local loss curvature at undertrained
epochs. These results explains the lower efficacy of under-
trained MobileNetV2 surrogate models on both ImageNet
and CIFAR-10 (as shown in Figure 3), and support our con-
clusion that this effect is partially caused by low local loss
curvature for undertrained epochs. We report experimen-
tal setup and final accuracies of ImageNet models in SM in
Section S3.2, and report full results of adversarial transfer
in SM in Section S2.

6.2. Adversarially trained transfer
We next investigated the impact of adversarial training

on this phenomenon, providing results for transferred at-
tacks between two ResNet18 models adversarially trained
using the Fast-FGSM method introduced by [29], as dis-
cussed in Section 3. Some prior work has been done here
by Vivek et al., who showed intermediate-epoch adversarial
efficacy for non-robust adversarially trained models trained
with FGSM examples (discussed there in the context of re-
ducing the cost of ensemble adversarial training) [28]. Our
results show that intermediate epoch transferability is re-
stricted to non-robust models (models which are not secure
against iterative attacks) such as naturally trained or non-
robust FGSM trained models. We report full results on ad-
versarially trained models in Figure 4. Our results also call

into question the conclusion of Vivek et al. that this effect
is caused by adversarial training producing models which
generate weak adversaries, since we find that this effect is
not present in robust models.

7. Explaining surrogate-based transferability
Here we evaluate potential causes of improved trans-

ferability for certain surrogates, and build an explanatory
model for transferability.

Gradient similarity is an important factor in transfer-
ability. Models which produce similar gradients on input
images will produce similar adversarial images when using
gradient-based attacks. We suggest that by undertraining
the surrogate classifier, we retain more universal character-
istics in the gradients (ie, the model gradients have rela-
tively high similarity to gradients of other models with dif-
ferent architectures), ensuring that the surrogate model gra-
dients will be similar to any target classifier which learns
the data manifold regardless of architecture. To evaluate
this effect, we calculated the cosine similarity gradients for
surrogate and target models on clean images. We calculate
gradients on test set images for surrogate and target mod-
els. We then reshape each image gradient into a vector, and
take the l2 normalized dot product of the target and surro-
gate model gradients, averaging this value across all images.
Here xis represents the reshaped gradient of image i with
respect to surrogate model loss and xit represents the same
quantity with respect to target model loss:

Similarity =
1

n

n∑

i=1

(
xisx

i
t

|xis|2|xit|2
). (3)

We show results for all surrogate and target models in
Figure 3. For all surrogate-target pairs evaluated, gradient
similarity is negatively correlated to the post-attack accu-
racy with p < .001. We report correlations in SM in Ta-
ble S3. However, the results shown in Figure 3 raise several
questions which suggest that gradient correlation is not a
perfect proxy for transferability. Note that while the similar-
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Figure 4: Accuracy of an adversarially trained ResNet18 model against transferred I-FGSM examples from a second adver-
sarially trained ResNet18 model by epoch of the surrogate model, broken out by type of adversarial training. Lower accuracy
indicates better transfer.

ity plots for all surrogate/target models exhibit sharp spikes
in gradient similarity after epoch 30, which matches trans-
ferability improving at that epoch, in many cases gradient
similarity does not decline appreciably after the epochs of
maximal transferability. Relying on solely gradient direc-
tion similarity, we might expect that later epochs would
transfer better for some models. These results confirm those
of Liu et al. in showing that while gradient similarity be-
tween a surrogate and target model is linked with adversar-
ial transferability, other factors appear to be at play [19].

Loss function curvature represents the second part of
our explanatory model. Our secondary goal in undertrain-
ing is to reduce decision boundary complexity, limiting the
effect of local loss maxima on the surrogate model. While
decision boundary complexity is computationally challeng-
ing to directly quantify, the topology of the decision of a
network is closely related to its loss landscape, which we
can measure locally [17]. Some prior work has also sug-
gested that local loss function smoothness is related to ad-
versarial transferability, and it also appears to be highly cor-
related with adversarial robustness [30, 22]. We evaluate the
hypothesis that intermediate epochs have lower complex-
ity than fully trained models. We follow Moosavi-Dezfooli
et al. [22] in using a finite difference approximation of local
loss curvature for a random subset of test data and take the
average magnitude of the result for each epoch. Our results
show a local minimum in loss curvature at the optimal inter-
mediate epoch for all models except MobileNetV2 (which
Figure 3 shows to have the least presence of this effect).
For all models, the optimal intermediate epoch curvature is
significantly lower than the final model curvature. Figure 5
shows the local loss curvature by epoch for all surrogate
models.

To confirm that a reduction in our metric of reduced loss
curvature is accurately reflecting a reduction in local loss
maxima, we note that the improved performance of MI-
FGSM over I-FGSM is based on the ability of MI-FGSM
to escape local loss maxima [6]. We thus expect that MI-
FGSM will outperform I-FGSM more on models with more

Figure 5: Loss curvature approximation for all surrogate
models.

local loss maxima (ie, models with a more complex loss
landscape). This suggests that if higher curvature indeed
implies more local loss maxima and a more complex loss
landscape, it will have strong positive correlation with how
much MI-FGSM outperforms I-FGSM. We calculate the
Pearson correlation coefficient between curvature and how
strongly MI-FGSM outperformed I-FGSM (ie, the accuracy
of target models on MI-FGSM examples minus their accu-
racy on I-FGSM examples) for each surrogate model. We
found highly statistically significant positive correlation be-
tween curvature and how strongly MI-FGSM outperformed
I-FGSM (mean coefficient = 0.86, p < .001 for all surro-
gate models). This indicates that our approach is success-
fully producing a surrogate model with a less complex loss
landscape, allowing I-FGSM to approach the transferability
of MI-FGSM.

These results also suggest an explanation for why the
ResNet18 surrogate model outperforms other models in in-
termediate transfer. Its complexity at all epochs is signifi-
cantly lower than that of the other models we consider. This
result may also explain why ResNet18 is the only surrogate
model architecture in which an intermediate I-FGSM attack
performs as well or better than the MI-FGSM attack: the
lower complexity of the ResNet18 model loss landscape re-
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Table 3: Linear model of post-attack accuracy for all target
models (R2 = 0.68)Table 2: Linear Model of Post-Attack Accuracy (R2 = 0.681)

Variable Coefficient P-Value

Loss Curvature Magnitude 4.25 p < .001

Gradient Similarity -37.10 p < .001
Gradient Similarity Squared 28.76 p < .001

DenseNet121 Source 19.99 p < .001
GoogLeNet Source 17.50 p < .001
MobileNetV2 Source 13.95 p < .001
ResNet18 Source 27.49 p < .001
SENet18 Source 15.58 p < .001

6.2 Loss function curvature analysis283

Our secondary goal in undertraining is to reduce decision boundary complexity, limiting the effect of284

local loss maxima on the surrogate model. While decision boundary complexity is computationally285

challenging to directly quantify, the topology of the decision of a network is closely related to its286

loss landscape, which we can measure locally [31]. Some prior work has also suggested that local287

loss function smoothness is related to adversarial transferability, and it also appears to be highly288

related with adversarial robustness [27; 32]. We evaluate the hypothesis that intermediate epochs289

have lower complexity than fully trained models. We follow Moosavi-Dezfooli et al. [32] in using a290

finite difference approximation of the Hessian matrix to quantify local loss curvature. Our results291

show a local minimum in local loss curvature at the optimal intermediate epoch for all models except292

MobileNetV2. For all models considered, the optimal intermediate epoch curvature is significantly293

lower than the final model curvature.294

To confirm that the reduced curvature is accurately reflecting a reduction in local loss maxima, we295

note that the improved performance of MI-FGSM over I-FGSM is based on the ability of MI-FGSM296

to escape local loss maxima. We thus expect that MI-FGSM will outperform I-FGSM more on297

models with more local loss maxima (ie, models with a more complex loss landscape). This suggests298

that if higher curvature indeed implies more local loss maxima and a more complex loss landscape, it299

will have strong positive correlation with how much MI-FGSM outperforms I-FGSM. We calculate300

the Pearson correlation coefficient between curvature and how strongly MI-FGSM outperformed301

I-FGSM (ie, the accuracy of target models on MI-FGSM examples minus their accuracy on I-FGSM302

examples) for each surrogate model. We found highly statistically significant positive correlation303

between curvature and how strongly MI-FGSM outperformed I-FGSM (mean coefficient = 0.86,304

p < .001 for all surrogate models). This indicates that our approach is successfully producing a305

surrogate model with a less complex loss landscape.306

These results also suggest a potential explanation for why the ResNet18 surrogate model outperforms307

other models in intermediate transfer; despite the relatively high parameter count, its complexity at all308

epochs is significantly lower than that of the other models we consider. This result may also explain309

why ResNet18 is the only surrogate model architecture in which an intermediate I-FGSM attack310

performs as well or better than the MI-FGSM attack: the lower complexity of the ResNet18 model311

loss landscape reduces the impact of local loss maxima, removing the advantage of the MI-FGSM.312

6.3 Modeling313

To evaluate the impact of gradient similarity and curvature, we build an ordinary least squares linear314

regression model to predict post-attack accuracy. The model includes gradient similarity, squared315

gradient similarity, curvature, and a constant for each source model. We report coefficients and316

significance measures in Table 2. Our model produces an R2 value of 0.681, which further confirms317

our hypothesis that gradient similarity and curvature are highly significant predictors of transferability.318

7 Discussion319

We find that adversarial examples generated on320

an undertrained surrogate model transfer signifi-321

cantly more successfully than attacks generated322

on fully trained models. Our MI-FGSM attacks323

generated on undertrained models outperform the current state of the art in query-free black-box324
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duces the impact of local loss maxima, eliminating the ad-
vantage of the MI-FGSM.

7.1. Explanatory Model

To evaluate the impact of gradient similarity and cur-
vature, we fit an ordinary least squares linear regression
model where the target variable is post-attack accuracy. The
model includes gradient similarity, squared gradient simi-
larity, curvature, and a constant for each source model as
the independent variables (to account for the overall accu-
racy of the underlying architecture). We include squared
gradient similarity due to the presence of nonlinear residu-
als in a model without squared gradient similarity. We re-
port coefficients and significance measures in Table 3. Our
model confirms that gradient similarity and curvature are
highly significant (p < .001) predictors of transferability.

8. Discussion
We find that adversarial examples generated on an un-

dertrained surrogate model transfer significantly more suc-
cessfully than attacks generated on fully trained models.
Our MI-FGSM attacks generated on undertrained models
outperform the current state of the art in query-free black-
box transfer. Our results clearly show that a new focus on
finding strong single surrogate models with low local loss
curvature can produce state-of-the-art results for adversar-
ial transfer. We explain intermediate epoch transferability
as the result of two effects: universal gradient characteris-
tics and low loss function curvature. We show that gradient
similarity and loss function curvature are highly significant
(p < .001) predictors of transferability.

We also note that this result has important implications
for the analysis of model robustness to black-box attack.
Prior work has assumed that surrogate models trained with
the same architecture and training procedure are the worst-
case for adversarial transfer, as suggested by Madry et al.

[20]. However, our results show that this is not the worst-
case. An undertrained surrogate model—even one with a
different architecture—can produce attacks which transfer
more successfully than those based on fully trained mod-
els of the same architecture, reducing post-attack accuracy
by more than 75% compared to the previous assumption of
worst-case black-box transfer. This indicates that prior ro-
bustness analyses underestimate the risk of black-box trans-
fer attacks. Our work also finds that this effect is not present
in robust models, though it is present to some degree in non-
robust adversarially trained models, confirming some of the
results of Vivek et al. [28]. Further work here may provide
insights into how the training process of robust models dif-
fers from that of non-robust models.

9. Conclusion and Future Work
Our results show that a simple approach focused on sur-

rogate model, rather than attack method, outperforms prior
methods for producing transferable adversarial attacks. We
show that this surrogate-focused approach to adversarial ex-
ample generation creates attacks which transfer well across
architectures and models, while requiring no query access
to the target model. The undertrained surrogate attack
outperforms the prior state-of-the-art, ILA-enhanced MI-
FGSM, by seven to ten percentage points, reducing tar-
get classifier performance to below random chance accu-
racy. Our findings indicate a gap in existing understanding
of both adversarial transferability and intermediate epoch
models, and show that stronger surrogate models repre-
sent an open area of investigation for improvements in
transfer attacks. Our findings also reveal that the previ-
ous known worst-case scenario for black-box transfer (a
surrogate model with the same architecture and training
procedure) is not an accurate representation of the worst-
case, and produces highly misleading estimates of model
robustness to black-box transfer attacks. Evaluation of
other strategies for producing strong surrogates may pro-
vide more insight into the mechanics of transferability and
the strength of black-box attacks.

Our findings leave open many avenues for future work.
First among these is how other choices of surrogate model
architecture, regularization, and hyperparameters can im-
pact adversarial transferability. Of the surrogate models we
evaluate, ResNet18 produces the strongest transfer to the
chosen target models. We suggest in Section 7 that this is
due to the model’s low local loss curvature compared to the
other models evaluated. However, it is likely that a more
effective surrogate architecture or training method exists.
Work on this front would help to identify architectural at-
tributes which produce more universal gradient characteris-
tics and reduce loss curvature. Finally, we suggest that ex-
tension of this analysis to different tasks may provide con-
text for how widespread this effect is.
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Supplementary Material For Query-Free Adversarial Transfer via Undertrained
Surrogates

S1. Transfer accuracies for other attacks
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Surrogate Epoch

0

20

40

60

80

100

A
cc

ur
ac

y 
A

fte
r A

tta
ck

Target
ResNet18
GoogLeNet
MobileNetV2

SENet18
DenseNet121

(e) DenseNet121 surrogate model

Figure S1: Post-attack accuracy for ILA enhanced MI-FGSM transfer attacks from naturally trained models to target models,
(ε = .05). Lower accuracy indicates better transfer. The dashed lines indicate the surrogate epoch with the best transferability
for most attacks.
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Surrogate Epoch

0

20

40

60

80

100

A
cc

ur
ac

y 
A

fte
r A

tta
ck

Target
ResNet18
ResNet18
GoogLeNet
GoogLeNet
MobileNetV2

MobileNetV2
SENet18
SENet18
DenseNet121
DenseNet121

(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure S2: Post-attack accuracy for ILA enhanced I-FGSM transfer attacks from naturally trained models to target models,
(ε = .05). Lower accuracy indicates better transfer. The dashed lines indicate the surrogate epoch with the best transferability
for most attacks.

2



1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Surrogate Epoch

0
10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y 
A

fte
r A

tta
ck

Target
ResNet18
GoogLeNet
MobileNetV2

SENet18
DenseNet121

(a) GoogLeNet surrogate model

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Surrogate Epoch

0
10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y 
A

fte
r A

tta
ck

Target
ResNet18
GoogLeNet
MobileNetV2

SENet18
DenseNet121

(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure S3: Post-attack accuracy for I-FGSM transfer attacks from naturally trained models to target models, (ε = .05). Lower
accuracy indicates better transfer. The dashed lines indicate the surrogate epoch with the best transferability for most attacks.
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure S4: Post-attack accuracy for FGSM transfer attacks from naturally trained models to target models, (ε = .05). Lower
accuracy indicates better transfer. The dashed lines indicate the surrogate epoch with the best transferability for most attacks.
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure S5: Post-attack accuracy for TAP transfer attacks from naturally trained models to target models, (ε = .05). Lower
accuracy indicates better transfer. The dashed lines indicate the surrogate epoch with the best transferability for most attacks.
Note that though the undertraining effect is still present for TAP, the optimal epoch may differ from that for other attacks and
not match the dashed lines.

S2. Transfer accuracies for ImageNet
The ImageNet dataset is a large scale dataset consisting of 1.2 million training images and 150,000 validation and test

images divided into 1000 mutually exclusive classes. The images are variably sized, but are resized to 224 by 224 for training
and evaluation. We train models with the same architectures as discussed in Section 5, with minor changes to reflect the
different input size of ImageNet vs CIFAR10.
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Surrogate Epoch

0

20

40

60

80

100

A
cc

ur
ac

y 
A

fte
r A

tta
ck

Target
ResNet18
GoogLeNet
DenseNet121

MobileNetV2
SENet18

(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure S6: Post-attack accuracy for ImageNet MI-FGSM transfer attacks from naturally trained models to target models,
(ε = .05). Lower accuracy indicates better transfer. The dashed lines indicate the surrogate epoch with the best transferability
for most attacks.

S3. Training Procedure
S3.1. CIFAR10

We train surrogate models for 90 epochs using stochastic gradient descent with momentum. We use a stepped learning
rate schedule with an initial learning rate of 0.1, decreased by a factor of 10 at epochs 30 and 60.

Target models were trained by Huang et al. for 350 total epochs, using a learning rate schedule which starts at 0.1 and
reduces by a factor of 10 at epochs 150 and 250. To introduce an additional architecture, we also train a MobileNetV2 model

6



for 350 epochs using the same learning rate schedule. We report validation set performance of all models in Table S1.

Table S1: Model validation set performance of fully trained CIFAR-10 surrogate and target models on clean (non-adversarial)
inputs.

Architecture Accuracy (Surrogate) Accuracy (Target)

ResNet18 94.29 94.77
SENet18 94.44 94.59
MobileNetV2 92.23 94.06
GoogLeNet 94.43 94.86
DenseNet121 94.99 95.61

Robust adversarially trained models were trained following the parameters introduced by [4], we train two robust models
for 45 epochs using cyclic learning rates. Our first model achieves clean test accuracy of 79.66%, and our second achieves
test accuracy of 79.58%. The first model achieves white box adversarial accuracy of 41.03% against a 20-iteration I-FGSM
attack, and the second gets 40.98% accuracy.

S3.2. ImageNet

We train the same model architectures for ImageNet as for CIFAR10, with adjustments to accommodate the adjusted
image size. We train all surrogate models models for 90 epochs using stochastic gradient descent with momentum, decaying
learning rate by a factor of 10 at epochs 30 and 60, using an initial learning rate of .01. We use pretrained models provided by
Torchvision as target models for all architectures except SENet18, which is not available in the Torchvision library [3]. For
SENet18, we train a target model using the same training procedure as used for the surrogate models. We report validation
set performance (Top-1 and Top-5 accuracy) in Table S2.

Table S2: Model validation set performance of fully trained ImageNet surrogate and target models on clean (non-adversarial)
inputs.

Architecture Top 1 (Surrogate) Top 5 (Surrogate) Top 1 (Target) Top 5 (Target)

ResNet18 70.16 87.95 69.76 89.08
SENet18 71.30 88.57 71.49 88.68
MobileNetV2 66.11 85.71 71.88 90.29
GoogLeNet 69.48 87.66 69.78 89.53
DenseNet121 77.01 91.72 74.65 92.17

S4. Hyperparameters
We evaluated results for a variety of hyperparameters to determine the impact of hyperparameter selection on intermediate

epoch transferability. We evaluate hyperparameters using our strongest model and attack (ResNet18 and Momentum IFGSM),
and transfer to all target models, reporting average accuracy across targets.

S4.1. Batch Size

We evaluate ResNet18 surrogate models trained using a variety of batch sizes (Batch Size ∈ {32, 64, 128, 256, 512}).
We find that the effect of intermediate epoch transferability persists across all evaluated surrogate model training batch sizes,
and show results in Figure S7.
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Figure S7: ResNet18 surrogate model using varied training batch sizes

S4.2. Learning Rate

We evaluate ResNet18 surrogate models trained using a variety of learning rates (Learning Rate ∈ {.05, .01, .2, .5}).
Though the transfer curves are more distinct than those depicted for varied batch size in Figure S7, all learning rates exhibit
the same pattern — the optimal epoch for transfer (between 30 and 35 or 60 and 65 depending on model) is far before the
fully trained epoch (between 80 and 89 for all models). We show results in Figure S8.
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Figure S8: ResNet18 surrogate model using varied training learning rates

S4.3. Optimizer

We evaluated results using models trained with alternative optimizers. We found that optimizer selection does impact
results, and show results in Figure S9. Surrogate epoch 87 is the fully trained model for SGD with no momentum, and
surrogate epoch 27 is the fully trained model for Adam. We find that intermediate epoch transferability is consistent for
SGD with no momentum, but is less present for the Adam optimizer. We suggest that optimizers which use parameter-level
learning rates (such as Adam) do not experience this effect strongly.

We evaluate cyclic learning rates to test this effect, and find that optimal surrogate efficacy is impacted by global learning

8



rate decay events. As shown in Figure S10, transferability for a model trained using Cyclic learning rates goes up and down
in a pattern following the learning rate.

We suggest that this is because during SGD training, learning rate decay after a plateau in validation set accuracy typ-
ically produces a stronger model (as the model enters a better local optimum in the loss landscape). After the decay, the
model begins to overfit to the local loss landscape, and adversarial images generated from the surrogate model become less
transferable.
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(a) ResNet18 trained using SGD with no momentum
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(b) ResNet18 trained using the Adam optimizer

Figure S9: Post-attack accuracy for transfer attacks from naturally trained ResNet18 models with varied optimizers to target
models, (ε = .05). Lower accuracy indicates better transfer. The dashed lines indicate the surrogate epoch with the best
transferability for most attacks.
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Figure S10: ResNet18 surrogate model using SGD with cyclic learning rates
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S5. Correlation between gradient similarity and transferability

Table S3: Pearson correlation coefficients between gradient similarity and post-attack accuracy for all epochs of each surro-
gate/target pair. * indicates p < .05, ** indicates p < .01, and *** indicates p < .001.

Source Target

ResNet18 SENet18 MobileNetV2 GoogLeNet DenseNet121

ResNet18 -0.58*** -0.57*** -0.75*** -0.76*** -0.84***
SENet18 -0.68*** -0.63*** -0.70*** -0.69*** -0.76***
MobileNetV2 -0.95*** -0.96*** -0.97*** -0.99*** -0.97***
GoogLeNet -0.64*** -0.63*** -0.60*** -0.70*** -0.55***
DenseNet121 -0.58*** -0.60*** -0.78*** -0.53*** -0.59***

S6. Comparison to other surrogates
To address the possibility that our final epoch models are overtrained, and do not represent typical models, we also

evaluate attacks between our target models. We use each target model as a surrogate, and evaluate the transferability of
attacks generated using that target model to other target models. All models except for the MobileNetV2 architecture were
released as pretrained models by Huang et al. [1], who used these models as their target and surrogate models, ensuring that
our comparison here is a fair comparison to prior work. All models were trained using a open-sourced training code and
hyperparameters provided by [2]. When evaluated as surrogates, these models perform very similarly to the best loss epochs
of our separately trained surrogate models, and our undertrained surrogate models outperform them by a wide margin. We
report the results of this analysis in SM in Table S4. This indicates that our best loss models are representative of typical
surrogate models for CIFAR-10.

Table S4: Accuracy (%) after attack by given CIFAR-10 target model (column) for attacks generated using each of the other
target models. We omit the diagonal, since the diagonal is a white box attack. ε = .05. Lower accuracy indicates better
transfer.

Attack Source Target

ResNet18 SENet18 MobileNetV2 GoogLeNet DenseNet121

MI-FGSM ResNet18 — 17.90 21.87 29.06 19.64
SENet18 12.28 — 16.37 20.10 12.87
MobileNetV2 17.64 18.31 — 21.89 16.78
GoogLeNet 26.80 18.31 27.87 — 22.93
DenseNet121 11.42 10.78 12.13 12.67 —

I-FGSM ResNet18 — 27.35 31.45 42.81 29.34
SENet18 16.06 — 21.00 25.88 17.26
MobileNetV2 23.41 24.60 — 28.33 22.07
GoogLeNet 36.90 35.61 36.73 — 31.29
DenseNet121 21.65 20.72 21.95 24.10 —

ILA MI-FGSM ResNet18 — 7.95 9.60 12.96 8.41
SENet18 7.07 — 8.56 11.29 7.36
MobileNetV2 27.24 29.00 — 33.45 26.60
GoogLeNet 11.47 11.56 12.19 — 8.56
DenseNet121 6.91 6.59 7.01 7.87 —

ILA I-FGSM ResNet18 — 7.67 9.35 13.86 7.74
SENet18 6.66 — 8.14 10.98 6.88
MobileNetV2 28.04 29.66 — 34.17 26.94
GoogLeNet 12.52 12.14 13.05 — 9.05
DenseNet121 6.43 6.16 6.73 7.62 —

TAP ResNet18 — 20.66 21.55 25.70 20.72
SENet18 15.14 — 18.37 21.58 15.81
MobileNetV2 28.92 29.64 — 34.65 27.42
GoogLeNet 17.79 17.82 17.10 — 15.37
DenseNet121 20.37 19.49 20.15 20.46 —
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